Dissipativity of θ-methods and one-leg methods for nonlinear neutral delay integro-differential equations
نویسندگان
چکیده
In this paper we study the dissipativity of a special class of nonlinear neutral delay integro-differential equations. The dissipativity of three kinds of important numerical methods, the linear θ-methods, one-leg θmethods, and the one-leg methods is obtained when they are applied to these problems. Numerical experiments are presented to check our findings. Key–Words: Linear θ-methods, One-leg θ-methods, One-leg methods, Nonlinear neutral delay integro-differential equations, Dissipativity, Absorbing set
منابع مشابه
Existence and uniqueness of solutions for neutral periodic integro-differential equations with infinite delay
...
متن کاملStability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملResearch Paper Dissipativity and Stability Analysis for Fractional Functional Differential Equations
This paper concerns the dissipativity and stability of the Caputo nonlinear fractional functional differential equations (F-FDEs) with order 0 < α < 1. The fractional generalization of the Halanay-type inequality is proposed, which plays a central role in studies of stability and dissipativity of F-FDEs. Then the dissipativity and the absorbing set are derived under almost the same assumptions ...
متن کاملA numerical method for solving delay-fractional differential and integro-differential equations
This article develops a direct method for solving numerically multi delay-fractional differential and integro-differential equations. A Galerkin method based on Legendre polynomials is implemented for solving linear and nonlinear of equations. The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations. A conver...
متن کاملShifted Chebyshev Approach for the Solution of Delay Fredholm and Volterra Integro-Differential Equations via Perturbed Galerkin Method
The main idea proposed in this paper is the perturbed shifted Chebyshev Galerkin method for the solutions of delay Fredholm and Volterra integrodifferential equations. The application of the proposed method is also extended to the solutions of integro-differential difference equations. The method is validated using some selected problems from the literature. In all the problems that are considered...
متن کامل